首页 百科 大学百科 正文

指数函数的性质 求解复杂指数类代数式的值

1.基本性质

如图1所示为a的不同大小影响函数图形的情况

在函数中可以看到y=ax。

图1指数函数图像

(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为(0,+∞)。

指数函数的性质 求解复杂指数类代数式的值  大学百科  第1张

(3)函数图形都是上凹的。

(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的(图2)。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

图2指数函数增减性

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=ax+b,则函数定过点(0,1+b))

(8)指数函数无界。

(9)指数函数是非奇非偶函数

(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

2.求解复杂指数类代数式的值时,需要注意以下几个方面

(1)当指数为负数时,一般先倒底,即先将底数变为倒数并将指数超威其相反数;

(2)当底数为小数时,一般将小数变为分数;

(3)对于根式,一般化为分数指数幂的形式;

(4)化简的最终结果要是最简形式,即不能既有根式又有分数指数幂的形式,也不能既有指数幂又有分母的形式,并且如果是二次根式,必须华为最简二次根式。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/daxuebaike/2479.html

相关文章

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高本文将探讨重庆中考职高分数线相对于普高的较高情况。首先,介绍学校录取分数线的差异;其次,分析选择好专业所需的分...

大学百科 2024-02-14 21:02 0 135

感谢您的支持
文章目录
 1