首页 百科 大学百科 正文

​双曲线的定义 双曲线的标准方程

一、双曲线的定义

(1)平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点。

(2)平面内,到给定一点及一直线的距离之比为常数e(e=c/a(e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为x=±a²/c(焦点在x轴上)或y=±a²/c(焦点在y轴上)。

(3)一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。

(4)在平面直角坐标系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0满足以下条件时,其图像为双曲线。(a、b、c不都是零,b2-4ac>0)

二、双曲线的标准方程

标准方程1:焦点在X轴上时为x2/a2-y2/b2=1(a>0,b>0)

标准方程1:焦点在Y轴上时为y2/a2-x2/b2=1(a>0,b>0)

​双曲线的定义 双曲线的标准方程  大学百科  第1张

双曲线取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)

双曲线对称性:关于坐标轴和原点对称,其中关于原点成中心对称。

1、双曲线顶点

A(-a,0),A&39;(a,0)。同时 AA&39;叫做双曲线的实轴且│AA&39;│=2a。

B(0,-b),B&39;(0,b)。同时 BB&39;叫做双曲线的虚轴且│BB&39;│=2b。

F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c

对实轴、虚轴、焦点有:a2+b2=c2

2、双曲线离心率

第一定义:e=c/a 且e∈(1,+∞)

第二定义:双曲线上的一点P到定点F的距离│PF│与点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e。

d点│PF│/d线(点P到定直线(相应准线)的距离)=e

3、双曲线的准线

焦点在x轴上:x=±a2/c

焦点在y轴上:y=±a2/c

三、双曲线的应用

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/daxuebaike/2897.html

相关文章

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高本文将探讨重庆中考职高分数线相对于普高的较高情况。首先,介绍学校录取分数线的差异;其次,分析选择好专业所需的分...

大学百科 2024-02-14 21:02 0 135

感谢您的支持
文章目录
 1