一、向量的加法
1、向量的加法满足平行四边形法则和三角形法则.
AB+BC=AC.
a+b=(x+x&39;,y+y&39;).
a+0=0+a=a.
2、向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
二、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y) b=(x&39;,y&39;) 则 a-b=(x-x&39;,y-y&39;).
三、向量的的数量积
1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.
2、向量的数量积的坐标表示:a•b=x•x&39;+y•y&39;.
3、向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
4、向量的数量积的性质
a•a=|a|的平方.
a⊥b 〈=〉a•b=0.
|a•b|≤|a|•|b|.
5、向量的数量积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.
(2)向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.
(3)|a•b|≠|a|•|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b.