首页 百科 大学百科 正文

向量的减法 向量的的数量积

一、向量的加法

1、向量的加法满足平行四边形法则和三角形法则.

AB+BC=AC.

a+b=(x+x&39;,y+y&39;).

a+0=0+a=a.

2、向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c).

二、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

向量的减法 向量的的数量积  大学百科  第1张

AB-AC=CB.即“共同起点,指向被减”

a=(x,y) b=(x&39;,y&39;) 则 a-b=(x-x&39;,y-y&39;).

三、向量的的数量积

1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.

2、向量的数量积的坐标表示:a•b=x•x&39;+y•y&39;.

3、向量的数量积的运算律

a•b=b•a(交换律);

(λa)•b=λ(a•b)(关于数乘法的结合律);

(a+b)•c=a•c+b•c(分配律);

4、向量的数量积的性质

a•a=|a|的平方.

a⊥b 〈=〉a•b=0.

|a•b|≤|a|•|b|.

5、向量的数量积与实数运算的主要不同点

(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.

(2)向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.

(3)|a•b|≠|a|•|b|

(4)由 |a|=|b| ,推不出 a=b或a=-b.

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/daxuebaike/2949.html

相关文章

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高本文将探讨重庆中考职高分数线相对于普高的较高情况。首先,介绍学校录取分数线的差异;其次,分析选择好专业所需的分...

大学百科 2024-02-14 21:02 0 135

感谢您的支持
文章目录
 1