一、圆与圆的位置关系
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r 两圆外离; 两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r 两圆外切; 两圆的圆心距离之和等于两圆的半径之和。
3、d=R-r 两圆内切; 两圆的圆心距离之和等于两圆的半径之差。
4、d<R-r 两圆内含;两圆的圆心距离之和小于两圆的半径之差。
5、d<R+r 两园相交;两圆的圆心距离之和小于两圆的半径之和。
二、圆和圆的位置关系,还可用有无公共点来判断:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
二、圆与直线的位置关系
直线与圆的位置关系有相交、相切、相离三种。
相交:直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。
相切:直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
相离:直线和圆没有公共点,这时我们说这条直线和圆相离。