首页 百科 大学百科 正文

指数函数与幂函数 幂函数的单调区间

一、指数函数和幂函数

1、计算方法不同

指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.

幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。

2、性质不同

幂函数性质:

(1)正值性质

当α>0时,幂函数y=xα有下列性质:

a、图像都经过点(1,1)(0,0);

b、函数的图像在区间[0,+∞)上是增函数;

c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;

(2)负值性质

当α<0时,幂函数y=xα有下列性质:

指数函数与幂函数 幂函数的单调区间  大学百科  第1张

a、图像都通过点(1,1);

b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

(3)零值性质

当α=0时,幂函数y=xa有下列性质:

y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

指数函数性质:

(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此不予考虑,同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为(0,+∞)。

(3)函数图形都是上凹的。

(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的(图2)。

(5)可以看出,就是当a从0趋向于无穷大的过程中(不等于0),函数曲线分别趋向于接近y轴正半轴和x轴负半轴单调递减函数的位置,以及单调递增函数的位置。Y轴的正半轴和X轴的负半轴。水平线y=1是由减到增的过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)指数函数无界。

(8)指数函数是非奇非偶函数。

指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

二、幂函数的单调区间

当α为整数时,α的正负性和奇偶性决定了函数的单调性:

①当α为正奇数时,图像在定义域为R内单调递增;

②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;

③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减);

④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。p分页标题e

当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性:

①当α>0,分母为偶数时,函数在第一象限内单调递增;

②当α>0,分母为奇数时,函数在第一三象限各象限内单调递增;

③当α<0,分母为偶数时,函数在第一象限内单调递减;

④当α<0,分母为奇数时,函数在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/daxuebaike/3456.html

相关文章

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高本文将探讨重庆中考职高分数线相对于普高的较高情况。首先,介绍学校录取分数线的差异;其次,分析选择好专业所需的分...

大学百科 2024-02-14 21:02 0 135

感谢您的支持
文章目录
 1