一、复合函数怎么求导
总的公式f&39;[g(x)]=f&39;(g)×g&39;(x)
比如说:求ln(x+2)的导函数
[ln(x+2)]&39;=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x&39;】 ×1【注:1即为(x+2)的导数】
主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。
二、复合函数证明方法
先证明个引理
f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f&39;(x0)=H(x0)
证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U&39;(x0)(x0去心邻域);H(x)=f&39;(x0),x=x0
因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f&39;(x0)=H(x0)
所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f&39;(x)=H(x0)
所以f(x)在点x0可导,且f&39;(x0)=H(x0)