首页 百科 大学百科 正文

四边形内角和计算方法 多边形内角和定理证明

一、四边形内角和计算方法

四边形内角和等于360°。

n边型的内角和为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=360°。

四边形内角和计算方法 多边形内角和定理证明  大学百科  第1张

二、多边形内角和定理证明

证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.

因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°

所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)

即n边形的内角和等于(n-2)×180°.(n为边数)

证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.

因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)

所以n边形的内角和是(n-2)×180°.

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/daxuebaike/6358.html

相关文章

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高本文将探讨重庆中考职高分数线相对于普高的较高情况。首先,介绍学校录取分数线的差异;其次,分析选择好专业所需的分...

大学百科 2024-02-14 21:02 0 135

感谢您的支持
文章目录
 1