首页 百科 大学百科 正文

​相似矩阵的特征向量一样吗 向量的表示方法

一、相似矩阵的特征向量一样吗

没有这种性质。特征向量之间是这样联系的:Ax=λx,P^{-1}BP=A,那么B(Px)=λ(Px)

在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B。相似矩阵具有相同的可逆性,当它们可逆时,则它们的逆矩阵也相似。

特征函数满足如下特征值方程:

其中λ是该函数所对应的特征值。这样一个时间的函数,如果λ

​相似矩阵的特征向量一样吗 向量的表示方法  大学百科  第1张

=

0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如,理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。

该特征值方程的一个解是N

=

exp(λt),也即指数函数;这样,该函数是微分算子d/dt的特征值为λ的特征函数。若λ是负数,我们称N的演变为指数衰减;若它是正数,则称指数增长。λ的值可以是一个任意复数。

二、向量的表示方法

1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。

2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。)

3、坐标表示:

在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。

在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z),使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, k)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, k),也就是点P的坐标。向量OP称为点P的位置向量。

当然,对于空间多维向量,可以通过类推得到。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/daxuebaike/7796.html

相关文章

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高

重庆中考职高分数线比普高高本文将探讨重庆中考职高分数线相对于普高的较高情况。首先,介绍学校录取分数线的差异;其次,分析选择好专业所需的分...

大学百科 2024-02-14 21:02 0 135

感谢您的支持
文章目录
 1