2022甘肃高考数学冲刺试卷及答案解析
一、选择题:(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若复数,则z2=()
A.B.C.D.
2.已知集合A=,B={x|x2-2x-3<0},那么A∩(CRB)为()
A.(-1,5)B.(-1,3)
C.(-∞,-1) ∪[3,+∞)D.[3,5]
3.与函数的图象相同的函数是()
A. y = x-1B. y = C. y = |x-1|D. y =
4.若曲线在点处的切线方程是,则()
A.B.C.D.
5.某个容量为的样本的频率分布直方图如右,则在区间[4, 5)上的数据的频数为()
A.70B.
C.30D.
6.设随机变量ξ等可能取值1,2,3,…,n,
如果P(ξ<4)=0.3,那么n的值为()
A.3B.4
C.9D.10
7.函数y =的最大值是()
A.3B.4C.8D.5
8.设a=log54,b=(log53)2,c=log45,则()
A.a < c < bB.b < c < aC.a < b < cD.b < a < c
9.若与在区间(1,2)上都是减函数,则实数的取值范围是
()
A.B.
C.(0,1)D.
10.已知函数,是的反函数,若(),则的值为()
A. B.4 C.1 D.10
11.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是 () A.a <0 B.a >0C.a <-1D.a >1
12.数列{an}中,a1=,an+an+1=,则(a1+a2+…+an) =()
A.B.C.D.
二、填空题:(本大题共4小题,每小题5分,共20分)
13.已知函数f (x)和g(x)都是定义在R上的奇函数,函数F(x) = a f (x)+bg(x) +2在区间(0,+∞)上的最大值是5,则F(x)在(-∞,0)上的最小值是.
14.等差数列{}中,,,则此数列的前15项之和是.
15.已知数列{}的前n项和(),那么数列{}的通项=.
16.若关于x的不等式2->|x-a| 至少有一个负数解,则实数a的取值范围是.
三、解答题:(本大题有6小题,共70分;应按题目要求写出必要的文字说明、证明过程或演算步骤)
17.(本题10分)解关于x的不等式: (a>0,a≠1).
18.(本题10分)已知函数是奇函数,当x>0时,有最小值2,且f (1).
(Ⅰ)试求函数的解析式;
(Ⅱ)函数图象上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,说明理由.
19.(本题12分)已知数列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),数列{bn}满足bn=an+1-2an.
(Ⅰ)求证:数列{-}是等比数列;
(Ⅱ)求数列{}的通项公式;
(Ⅲ)求.
20.(本题12分)某人抛掷一枚硬币,出现正反的概率都是,构造数列,使得,记.p分页标题e
(Ⅰ)求的概率;
(Ⅱ)若前两次均出现正面,求的概率.
21.(本题12分)已知函数对任意实数p、q都满足
.
(Ⅰ)当时,求的表达式;
(Ⅱ)设求;
(Ⅲ)设求证:.
22.(本题14分)已知函数f (x) = ax3 +x2 -ax,其中a,x∈R.
(Ⅰ)若函数f (x) 在区间(1,2)上不是单调函数,试求a的取值范围;
(Ⅱ)直接写出(不需给出运算过程)函数的单调递减区间;
(Ⅲ)如果存在a∈(-∞,-1],使得函数, x∈[-1, b]
(b > -1),在x = -1处取得最小值,试求b的最大值.
参考答案
一、选择题:(每小题5分,共60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
A
C
D
B
D
D
A
C
B
二、填空题:(每小题5分,共20分)
13.-1;14.180;15.;16.
三、解答题:(共70分)
17.(本题10分)
解:原不等式等价于……①……………1分 ① 当时,①式可化为
即 亦即
∴ x > a+1………………5分
②当时,①式可化为
即 亦即
∴………………9分
综上所述,当时,原不等式的解集为;
当时,原不等式的解集为. .………………10分
18.(本题10分)
解:(Ⅰ)∵ f(x)是奇函数∴f(―x) =―f(x)
即
……………………1分
当且仅当时等号成立.则……2分
由得 ,即,
,解得;
又 ,
……………………………………………5分
(Ⅱ)设存在一点(x0,y0)在y=f (x)图象上,
则关于(1,0)的对称点(,―y0)也在y =f (x)图象上,…………6分
则 解得:或
∴函数f (x)图象上存在两点和关于点(1,0)
对称.…………………………………10分
19.(本题12分)
解:(Ⅰ)由 an+2-3an+1+2an= 2n+1得 (an+2-2an+1)-( an+1-2an)= 2n+1;
即bn+1-bn = 2n+1,而 b1=a2-2a1=4, b2 =b1+22=8;
∴ { bn+1-bn}是以4为首项,以2为公比的等比数列.…………………3分
(Ⅱ)由(Ⅰ),bn+1-bn = 2n+1, b1=4,
∴ bn = (bn-bn-1)+ (bn-1-bn-2)+···+(b2-b1) + b1
=2n + 2n-1 +···+22 +4 = 2n+1.………………………6分
即 an+1-2an=2n+1,∴ ;
∴ {}是首项为0,公差为1的等差数列,
则 ,∴.………………………9分
(Ⅲ) ∵ ,p分页标题e
∴.………………………12分
20.(本题12分)
解:(Ⅰ),需4次中有3次正面1次反面,设其概率为
则;………………………6分
(Ⅱ)6次中前两次均出现正面,要使,则后4次中有2次正面、2次反面或3次正面、1次反面,设其概率为.
则.………12分
21.(本题12分)
解:(Ⅰ)由已知得
.………3分
(Ⅱ)由(Ⅰ)知;
于是 =;
故 =6
=.………………………7分
(Ⅲ)证明:由(Ⅰ)知 : ,设
则
.
两式相减得+…+
∴ .……………………12分
22.(本题14分)
解:(Ⅰ)解法一:
依题意知方程在区间(1,2)内有不重复的零点,
由得
∵x∈(1,2),∴
∴;
令 (x∈(1,2)),则,
∴在区间(1,2)上是单调递增函数,其值域为,
故a的取值范围是.………………………5分
解法二:
依题意知方程即在区间(1,2)内有不重复
的零点,
当a=0时,得 x=0,但0(1,2);
当a≠0时,方程的△=1+12a2>0,,必有两异号根,
欲使f (x) 在区间(1,2)上不是单调函数,方程在(1,2)内一定有一根,设,则F(1)·F(2)<0,
即(2a+2)(11a+4)<0,解得 ,
故 a的取值范围是 .
(解法二得分标准类比解法一)
(Ⅱ)函数g (x) 的定义域为(0,+∞),
当 a≥0时,g (x)在(0,+∞)上单调递增,无单调递减区间;
当 a<0时,g (x)的单调递减区间是………………8分
(Ⅲ);
依题意 在区间[-1, b]上恒成立,
即①
当x∈[-1, b] 恒成立,
当 x=-1时,不等式①成立;
当 -1< x ≤b时,不等式①可化为
②
令 ,由a∈(-∞,-1]知,的图像是
开口向下的抛物线,所以,在闭区间上的最小值必在区间的端点处取得,
而,
∴不等式②恒成立的充要条件是,
即,
亦即 a∈(-∞,-1];
当a∈(-∞,-1]时,,
∴ (b >-1),即 b2+b-4 ≤ 0;
解得 ;
但b >-1, ∴;
故 b的最大值为,此时 a =-1符合题意.……………14分