2022湖南高考数学冲刺试卷及答案解析
数学(理工农医类)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若a<0,>1,则(D)
A.a>1,b>0B.a>1,b<0C. 0<a<1, b>0D. 0<a<1, b<0
2.对于非0向时a,b,“a//b”的确良(A)
A.充分不必要条件B. 必要不充分条件
C.充分必要条件D. 既不充分也不必要条件
3.将函数y=sinx的图象向左平移0 <2的单位后,得到函数y=sin的图象,则等于(D)
A.B.C. D.
4.如图1,当参数时,连续函数 的图像分别对应曲线和 , 则[ B]
A B
C D
5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位[ C]
A85B 56C 49D 28
6. 已知D是由不等式组,所确定的平面区域,则圆在区域D内
的弧长为[ B]
ABC D
7.正方体ABCD—的棱上到异面直线AB,C的距离相等的点的个数为(C)
A.2B.3C. 4D. 5
8.设函数在(,+)内有定义。对于给定的正数K,定义函数
取函数=。若对任意的,恒有=,则
A.K的最大值为2B. K的最小值为2
C.K的最大值为1D. K的最小值为1【D】
二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上
9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__
10.在的展开式中,的系数为___7__(用数字作答)
11、若x∈(0, )则2tanx+tan(-x)的最小值为2.
12、已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为
13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数数位 50 。
14、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则
(1)球心到平面ABC的距离为 12;
(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为3
15、将正⊿ABC分割成(≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n+1)(n+2)
三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)p分页标题e
在,已知,求角A,B,C的大小。
解:设
由得,所以
又因此
由得,于是
所以,,因此
,既
由A=知,所以,,从而
或,既或故
或。
17.(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.、、,现在3名工人独立地从中任选一个项目参与建设。
(I)求他们选择的项目所属类别互不相同的概率;
(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。
解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件,,,i=1,2,3.由题意知相互独立,相互独立,相互独立,,,(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P()=,P()=,P()=
(1)他们选择的项目所属类别互不相同的概率
P=3!P()=6P()P()P()=6=
(2) 解法1设3名工人中选择的项目属于民生工程的人数为,由己已知,-B(3,),且=3。
所以P(=0)=P(=3)==,
P(=1)=P(=2)= =
P(=2)=P(=1)==
P(=3)=P(=0)= =
故的分布是
0
1
2
3
P
的数学期望E=0+1+2+3=2
解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件,
i=1,2,3 ,由此已知,·D,相互独立,且
P()-(,)= P()+P()=+=
所以--,既,
故的分布列是
1
2
3
18.(本小题满分12分)
如图4,在正三棱柱中,
D是的中点,点E在上,且。
(I)证明平面平面
(II)求直线和平面所成角的正弦值。
解(I) 如图所示,由正三棱柱的性质知平面
又DE平面ABC,所以DEAA.
而DEAE。AAAE=A所以DE平面AC CA,又DE平面ADE,故平面ADE平面AC CA。
(2)解法1如图所示,设F使AB的中点,连接DF、DC、CF,由正三棱柱ABC- ABC的性质及D是AB的中点知ABCD,ABDF
又CDDF=D,所以AB平面CDF,
而AB∥AB,所以
AB平面CDF,又AB平面ABC,故
平面AB C平面CDF。
过点D做DH垂直CF于点H,则DH平面AB C。
连接AH,则HAD是AD和平面ABC所成的角。
由已知AB=A A,不妨设A A=,则AB=2,DF=,D C=,
CF=,AD==,DH==—,
所以 sinHAD==。
即直线AD和平面AB C所成角的正弦值为。
解法2如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设
A A=,则AB=2,相关各点的坐标分别是
A(0,-1,0), B(,0,0),C(0,1,),D(,-,)。
易知=(,1,0), =(0,2,), =(,-,)
设平面ABC的法向量为n=(x,y,z),则有p分页标题e
解得x=-y, z=-,
故可取n=(1,-,)。
所以,(n·)===。
由此即知,直线AD和平面AB C所成角的正弦值为。
19.(本小题满分13分)
某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。
(Ⅰ)试写出关于的函数关系式;
(Ⅱ)当=640米时,需新建多少个桥墩才能使最小?
解 (Ⅰ)设需要新建个桥墩,
所以
(Ⅱ)由(Ⅰ)知,
令,得,所以=64
当0<<64时<0,在区间(0,64)内为减函数;
当时,>0. 在区间(64,640)内为增函数,
所以在=64处取得最小值,此时,
故需新建9个桥墩才能使最小。
20(本小题满分13分)
在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。
解(Ⅰ)设点P的坐标为(x,y),则3︳x-2︳
由题设
当x>2时,由①得
化简得
当时由①得
化简得
故点P的轨迹C是椭圆在直线x=2的右侧部分与抛物线在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1
(Ⅱ)如图2所示,易知直线x=2与,的交点都是A(2,),
B(2,),直线AF,BF的斜率分别为=,=.
当点P在上时,由②知
.④
当点P在上时,由③知
⑤
若直线l的斜率k存在,则直线l的方程为
(i)当k≤,或k≥,即k≤-2 时,直线I与轨迹C的两个交点M(,),N(,)都在C 上,此时由④知
∣MF∣= 6 - ∣NF∣= 6 -
从而∣MN∣= ∣MF∣+ ∣NF∣= (6 - )+ (6 - )=12 - ( +)
由 得 则,是这个方程的两根,所以+=*∣MN∣=12 - (+)=12 -
因为当
当且仅当时,等号成立。
(2)当时,直线L与轨迹C的两个交点 分别在上,不妨设点在上,点上,则④⑤知,
设直线AF与椭圆的另一交点为E
所以。而点A,E都在上,且
有(1)知
若直线的斜率不存在,则==3,此时
综上所述,线段MN长度的最大值为
21.(本小题满分13分)
对于数列若存在常数M>0,对任意的,恒有
则称数列为B-数列
(1)首项为1,公比为的等比数列是否为B-数列?请说明理由;
请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题
判断所给命题的真假,并证明你的结论;p分页标题e
(2)设是数列的前项和,给出下列两组论断;
A组:①数列是B-数列②数列不是B-数列
B组:③数列是B-数列④数列不是B-数列
请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。
判断所给命题的真假,并证明你的结论;
(3) 若数列都是数列,证明:数列也是数列。
解(1)设满足题设的等比数列为,则,于是
因此|- |+|-|+…+|-|=
因为所以即
故首项为1,公比为的等比数列是B-数列。
(2)命题1:若数列是B-数列,则数列是B-数列
次命题为假命题。
事实上,设,易知数列是B-数列,但
由的任意性知,数列是B-数列此命题为。
命题2:若数列是B-数列,则数列是B-数列
此命题为真命题
事实上,因为数列是B-数列,所以存在正数M,对任意的有
即。于是
所以数列是B-数列。
(III)若数列 {}是数列,则存在正数,对任意的有
注意到
同理:
记,则有
因此
+
故数列是数列
本资料由《七彩教育网》www.7caiedu.cn 提供!