首页 高起点辅导 数学辅导 正文

高考数学变态得分法高分必备

高考数学考高分的同学不仅是自身实力高,而且还掌握了答题技巧。因此小编整理了一些高考数学得分的方法,供参考。

高考数学整体答题技巧

解题一"慢"一"快",效果相得益彰

有些考生在考场上一味求快,结果题意未清,条件未全,便急于解答,岂不知"欲速则不达",结果思路受阻或进入死胡同,导致失败。所以我建议"审题要慢,解答要快",审题时整个解题过程的"基础工程",题目本事是怎样解题的信息源,必须充分弄懂题意,综合所有条件,提炼解题线索,形成整体认识,思路一旦出现,则尽量快速完成,防止"超时失分"(因答题时间不足而未做完试题失分)

力求运算准确,争取一次成功

数学高考题时间短,容量大,不允许做大量细致的解后检查,所以要力求运算准确,争取一次成功。解题速度是建立在解题准确度的基础上的,中间数据常常从数量、性质上影响后继各步的解答,因此在以快为上的前提下,还要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,或是丢掉重要的得分步骤。

讲究规范书写,力争既对又全

考试的有一个特点就是以卷面为依据,这就要求不但要会而且要对、对而且要全、全而且要规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、书写不工整又是造成非智力性因素失分的主要原因之一,会影响阅卷老师的"感情分"。

遇到难题不弃,寻求策略得分

会做的题当然要做对、做全、得满分,而不会做的或是难题该怎样得分呢?首先遇到难题不要放弃,岂不知"易题得满分难,难题得小分易",一般的难题第一、二问都是能得分的,即使一点思路都没有,我们不妨罗列一些相关的重要步骤和公式,也许不觉中已找到了解题的思路。再就是要学会"分段得分",高考数学解答题评分的总原则是"分段给分",即会多少知识给多少分,所以你可能前面某个地方卡住了,可以先跳过去,假定它是正确的,向后求解;或是前后两问无联系,只做其中某一问等等。

高考数学选择题技巧

1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。p分页标题e

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

高考数学变态得分法高分必备  数学辅导  第1张

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.逆推验证法:(代答案入题验证法):将所有选择答案代入进行验证,从而否定错误答案而得出正确答案的方法。

8.正难则反法:从题的正面解决比较难时,可从答案出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择答案的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法

高考数学各类型题解题技巧

三角函数题

第一步一般都是需要将三角函数化简成标准形式asin(wx+fai)+c,接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。

求最值时通过自变量的范围推到里面整体u=wx+fai的范围,然后可以直接画sinu的图像,避免画平移的图像。

这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。

数列题

注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可。

其它的一般注意类型采用不同的方法(已知sn求an、已知sn与an关系求an(前两种都是利用an=sn-sn-1,注意讨论n=1、n>;1),累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项)。

数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);p分页标题e

线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

小编推荐:高中数学满分答题技巧

概率与统计题

主要有频率分布直方图,注意纵坐标(频率/组距)。求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;

理科用排列组合算数。独立性检验根据公式算k方值,别算错数了,会查表,用1减查完的概率。

回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。

理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

圆锥曲线题

第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。

第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。

第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标)。

再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、定值问题(基本思想是函数思想。

将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。)、最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>;0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。

抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。p分页标题e

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/48985.html

相关文章

感谢您的支持
文章目录
 1