首页 高起点辅导 数学辅导 正文

数列有界是数列收敛的什么条件

必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件;但是有界数列不一定收敛。例如数列{(-1)^n},显然是有界的,但也是发散的。所以有界不是收敛的充分条件。

数列有界是数列收敛的什么条件  数学辅导  第1张

有界数列

有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标,下同)=B,称数列{An}有下界B,如果同时存在A、B时的数列{An}的值在区间[A,B]内,数列有界。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/49245.html

相关文章

感谢您的支持
文章目录
 1