椭圆周长公式:L=2πb+4(a-b)。椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆周长、面积计算公式
根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>b>0。椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
几何关系
点与椭圆点M(x0,y0)椭圆x²/a²+y²/b²=1;
点在圆内:x0²/a²+y0²/b²<1;
点在圆上:x0²/a²+y0²/b²=1;
点在圆外:x0²/a²+y0²/b²>1;
跟圆与直线的位置关系一样的:相交、相离、相切。
直线与椭圆
y=kx+m①
x²/a+y²/b²=1②
由①②可推出x²/a²+(kx+m)²/b²=1
相切△=0
相离△<0无交点
相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2)
求中点坐标
根据韦达定理x1+x2=-b/a,x1*x2=c/a
带入直线方程可求出y+y/2=可求出中点坐标。
|AB|=d=√(1+k²)[(x1+x2)²-4x1*x2]=√(1+1/k²)[(y1+y2)²-4x1*x2]