扇形的面积公式为:S扇=LR/2,这里的L为扇形弧长,R为半径,或π(R^2)*N/360,这里的360即是扇形的度数。
面积公式
S扇=LR/2(L为扇形弧长,R为半径)或π(R²)*N/360(即扇形的度数)扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°,半径为r的扇形面积为n/360*πr²。如果其顶角采用弧度单位,则可简化为1/2×弧长×(半径)
扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×(半径),与三角形面积:1/2×底×高相似。
弧长(L)=n/360·2πr=nπr/180,扇形的弧相似三角形的一条边。
扇形的特征
扇形都有一个角,角的顶点是圆心。扇形是由两条半径和圆上的一段曲线围成的。
圆形面积公式
面积公式圆面积公式是圆周率*半径的平方,用字母可以表示为:S=πr²或S=π*(d/2)²。(π表示圆周率,r表示半径,d表示直径)。
圆的半径:r
直径:d
圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值
圆面积:S=πr²;S=π(d/2)²
半圆的面积:S半圆=(πr²;)/2
圆环面积:S大圆-S小圆=π(R²-r²)(R为大圆半径,r为小圆半径)
圆的周长:C=2πr或c=πd
半圆的周长:d+(πd)/2或者d+πr