首页 高起点辅导 数学辅导 正文

高中不等式的基本性质

1、若a>b,则b<a;2、若a>b,b>c,则a>c;3、若a>b,则,a+c>b+c;4、若a>b.c>d则,a+c>b+d;5、若a>b,c>0则,ac>bc;a>b,c<0则.ac<bc;6、若a>b>0,c>d>0则,ac>bd.;7、若a>b>0则,a^n>b^n.﹙n∈n*,n≥2﹚;8、若a>b>0,则n次根a>n次根b.﹙n∈n*,n≥2﹚

不等式的基本性质

①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)

⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑥如果x>y>0,m>n>0,那么xm>yn;

高中不等式的基本性质  数学辅导  第1张

⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数);

或者说,不等式的基本性质的另一种表达方式有:

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

⑧倒数法则。

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。

另,不等式的特殊性质有以下三种:

①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。

当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/50185.html

相关文章

感谢您的支持
文章目录
 1