函数解析,函数主要有三种表达方式:1、列表;2、图象;3、解析式(较常用)。因此函数解析式只是函数的一种表达方式。函数解析式为,用“自变量x表示的式子”来表示y。
函数解析构成
主要有两部分构成:1、表达式;2、自变量的表达范围。
例如:(1)y=2x-5(x>0),(2)y=2x-5(-3<x<1);
显然函数(1)和函数(2)虽然表达式相同,由于自变量范围不同,所以是不同的两个函数。有时,函数书写过程中,存在省略自变量范围的形式:
如:(3)y=2x-5;(4) y=√2x-5;(5)y=1/(2x-5),这时它们的自变量范围就是使表达式有意义的自变量的值。
(3)的自变量范围是:x为任意实数(注:这个概念我们默认在实数范围内讨论,下同);(4)的自变量范围是:x>=2.5;(5)的自变量范围是:x≠2.5。