已知概率密度f(x),那么求F(x)对f(x)进行积分即可,在x<a时,f(x)都等于0,显然积分F(x)=0,而在a<x<b时,f(x)=1/(b-a),不定积分结果为x/(b-a),代入上下限x和a,于是在a到x上积分得到概率为(x-a)/(b-a)等。
均匀分布的分布函数是什么
均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。
均匀分布的分布函数的求法
已知概率密度f(x),
那么求F(x)对f(x)进行积分即可,
在x<a时,f(x)都等于0,
显然积分F(x)=0
而在a<x<b时,f(x)=1/(b-a)
不定积分结果为x/(b-a),代入上下限x和a
于是在a到x上积分得到概率为(x-a)/(b-a)
那么x大于等于b时,概率就等于1,
所以得到了上面的式子。