高中数学不等式一般常考的主要有两个:基本不等式和绝对值不等式。尤其是基本不等式:几何平均值<=算术平均值。注意到“一正”,“二定”,“三相等”,一般用采用拼凑法或待定系数法来构造满足条件的两项或三项,使其乘积为一定值。
不等式的解题方法与技巧
解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。
(3)两边平方法:适用于两边非负的方程或不等式。
(4)几何意义法:适用于有明显几何意义的情况。
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
不等式的概念
一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。