首页 高起点辅导 数学辅导 正文

高中等差数列求和公式有哪些

想要学好数学,就要先掌握好数学公式。那么,等差数列求和公式有哪些呢?下面和小编一起来看看吧!

等差数列求和公式是什么

等差数列公式an=a1+(n-1)d

前n项和公式为:Sn=na1+n(n-1)d/2

若公差d=1时:Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n均为正整数

文字翻译

第n项的值an=首项+(项数-1)×公差

前n项的和Sn=首项+末项×项数(项数-1)公差/2

公差d=(an-a1)÷(n-1)

项数=(末项-首项)÷公差+1

数列为奇数项时,前n项的和=中间项×项数

高中等差数列求和公式有哪些  数学辅导  第1张

数列为偶数项,求首尾项相加,用它的和除以2

等差中项公式2an+1=an+an+2其中{an}是等差数列

等差数列相关公式

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式.

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

和=(首项+末项)*项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

等差数列的应用:

日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级.

若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q).

若为等差数列,且有an=m,am=n.则a(m+n)=0.

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/51048.html

相关文章

感谢您的支持
文章目录
 1