首页 高起点辅导 数学辅导 正文

对数函数性质

对数函数性质是:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1...

对数函数性质

定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。

值域:实数集R,显然对数函数无界

定点:对数函数的函数图像恒过定点(1,0)

单调性:a>1时,在定义域上为单调增函数

0<a<1时,在定义域上为单调减函数

奇偶性:非奇非偶函数

周期性:不是周期函数

对数函数性质  数学辅导  第1张

对称性:无

最值:无

零点:x=1

基本性质

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N)

4、log(a)(M÷N)=log(a)(M)-log(a)(N)

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

其他性质

1.换底公式

log(a)(N)=log(b)(N)÷log(b)(a)

2.log(a)(b)=1/log(b)(a)

3.对数函数的图象都过(1,0)点。

4.对于y=log(a)(n)函数,

①,当0<a<1时,图象上函数显示为(0,+∞)单减。随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1。

②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1。

5.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/51302.html

相关文章

感谢您的支持
文章目录
 1