解分式方程的步骤为:先去分母在移项,最后验根。解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解题步骤
①去分母
方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时,不要忘了改变符号。
②按解整式方程的步骤
移项,若有括号应去括号,注意变号,合并同类项,把系数化为1,求出未知数的值。
③验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。
注意事项
(1)去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的解。
(3)増根使最简公分母等于0。
分式方程
概念
分式方程是方程中的一种,且分母里含有未知数的有理方程叫做分式方程。例如100/x=95/x+0.35
例题解析
(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要检验
经检验,x=-3/2是方程的解
(2)2/x-1=4/x^2-1
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要检验
经检验,x=1使分母为0,是增根。
所以原方程2/x-1=4/x^2-1无解。