首页 高起点辅导 数学辅导 正文

可导和可微的关系

可导和可微的关系:可微=>可导=>连续=>可积,在一元函数中,可导与可微等价。

可微、可导的关系

可导与连续的关系:可导必连续,连续不一定可导;

可微与连续的关系:可微与可导是一样的;

可积与连续的关系:可积不一定连续,连续必定可积;

可导与可积的关系:可导一般可积,可积推不出一定可导;

可导和可微的关系  数学辅导  第1张

可微=>可导=>连续=>可积

可微条件

必要条件

若函数在某点可微分,则函数在该点必连续;

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

可导条件

充分必要条件:函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。

函数可导与连续的关系:

定理:若函数f(x)在x0处可导,则必在点x0处连续。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/51488.html

相关文章

感谢您的支持
文章目录
 1