首页 高起点辅导 数学辅导 正文

极值存在的充分必要条件

一个论断A,想要知道它是否成立,我们会采用一些条件去判别它。一般的,对于多数实际问题,A成立的精确描述即充要条件是不容易找到的。于是退而求我们想知道,什么条件下A是成立的?什么条件下A是不成立的?这样,从成立与否的两方面去描述A,能让我们比较清晰的认识A。

极值存在的充分必要条件  数学辅导  第1张

极值,是“极大值” 和 “极小值”的统称。在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地 或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre de Fermat)是第一位发现函数的最大值和最小值数学家之一。

如集合理论中定义的,集合的最大值和最小值分别是集合中最大和最小的元素。 无限无限集,如实数集合,没有最小值或最大值。

极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/51669.html

相关文章

感谢您的支持
文章目录
 1