首页 高起点辅导 数学辅导 正文

圆心角越大扇形就越大对不对

依据圆心角,弦,弧的关系,得到在同圆或等圆中,圆心角越大所对应的弧线越长,得到的扇形的面积越大,圆心角越小所对应的弧线越短,扇形的面积越小。在同圆中,圆心角越大,扇形的面积也越大。

推论:

在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等

与圆周角关系

在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。

定理证明:证明。

作直径CD,

∵OA = OB = OC

∴∠OBC = ∠OCB ∠OAC = ∠OCA

圆心角越大扇形就越大对不对  数学辅导  第1张

∴∠BOD = ∠OBC+∠OCB = 2∠BCD

即:∠BCD = 1/2∠BOD

同理:∠ACD = 1/2∠AOD

∴∠ACB = ∠BCD - ∠ACD

= 1/2(∠BOD - ∠AOD)

= 1/2∠AOB

计算公式

①L(弧长)=(r/180)XπXn(n为圆心角度数,以下同);

②S(扇形面积) = (n/360)Xπr2;

③扇形圆心角n=(180L)/(πr)(度)。

④K=2Rsin(n/2) K=弦长;n=弦所对的圆心角,以度计。

性质

①顶点是圆心;

②两条边都与圆周相交。

③圆心角性质:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等。在同圆或等圆中,圆心角、圆心角所对的弦、圆心角所对的弧和对应弦的弦心距,四对量中只要有一对相等,其他三对就一定相等。

④一条弧的度数等于它所对的圆心角的度数。

⑤半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/51679.html

相关文章

感谢您的支持
文章目录
 1