几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的。平面几何中,将和圆只有一个公共交点的直线叫做圆的切线。
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)。
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线。
在高等数学中,对于一个函数,如果函数某处有导数,那么此处的导数就是过此处的切线的斜率,该点和斜率所构成的直线就为该函数的一个切线。