首页 高起点辅导 数学辅导 正文

幂函数的收敛半径怎么求

收敛半径r是一个非负的实数或无穷大,使得在|z-a|<r时幂级数收敛,在|z-a|>r时幂级数发散。当z和a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。

幂函数的性质是什么

正值性质

当α>0时,幂函数y=xα有下列性质:

a、图像都经过点(1,1)(0,0);

b、函数的图像在区间[0,+∞)上是增函数;

幂函数的收敛半径怎么求  数学辅导  第1张

c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);

负值性质

当α<0时,幂函数y=xα有下列性质:

a、图像都通过点(1,1);

b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

零值性质

当α=0时,幂函数y=xa有下列性质:

a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/52139.html

相关文章

感谢您的支持
文章目录
 1