首页 高起点辅导 数学辅导 正文

常函数是周期函数吗

常函数是周期函数,只是没有最小正周期。对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数。

由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。

周期函数的性质共分以下几个类型:

常函数是周期函数吗  数学辅导  第1张

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/52142.html

相关文章

感谢您的支持
文章目录
 1