首页 高起点辅导 数学辅导 正文

洛必达法则怎么用

洛必达法则是在一定条件下,通过分子分母分别求导,再求极限,来确定未定式值的方法。两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。

洛必达法则怎么用  数学辅导  第1张

洛必达法则应用条件

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

洛必达法则的运用

当分子分母都趋近于0或无穷大时,如果单纯的代入极限值是不能求出极限的,但是直观的想,不管是趋近于0或无穷大,都会有速率问题,就是说谁趋近于0或无穷大快一些,而速率可以通过求导来实现,所以就会有洛必达法则。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/52237.html

相关文章

感谢您的支持
文章目录
 1