积分中值定理分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。积分中值定理揭示了一种将积分化为函数值,或者是将复杂函数的积分化为简单函数的积分的方法,是数学分析的基本定理和重要手段,在求极限、判定某些性质点、估计积分值等方面应用广泛。
定理的应用
积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理,去掉积分号,或者化简被积函数。
求极限
在函数极限的计算中,如果含有定积分式,常常可以运用定积分的相关知识,比如积分中值定理等,把积分号去掉。
不等式证明
积分不等式是指不等式中含有两个以上积分的不等式,当积分区间相同时,先合并同一积分区间上的不同积分,根据被积函数所满足的条件,灵灵活运用积分中值定理,以达到证明不等式成立的目的。
在证明定积分不等式时,常常考虑运用积分中值定理,以便去掉积分符号,如果被积函数是两个函数之积时,可考虑用积分第一或者第二中值定理。对于某些不等式的证明,运用原积分中值定理只能得到“≥”的结论,或者不等式根本不能得到证明。而运用改进了的积分中值定理之后,则可以得到“>”的结论,或者成功的解决问题。