首页 高起点辅导 数学辅导 正文

并集的定义和性质

一、并集的定义和性质

1、并集的定义

一般地,由所有属于集合$A$或属于集合$B$的元素组成的集合,称为集合$A$与$B$的并集,记作$A∪B$(读作“$A$并$B$”),即$A∪B={x|x∈A$或$x∈B}$。

2、并集的性质

(1)$A∪B=B∪A$(两个集合的并集满足“交换律”)

(2)$A∪A=A$(任何集合与其本身的并集等于集合本身)

并集的定义和性质  数学辅导  第1张

(3)$A∪varnothing=varnothing∪A=A$(任何集合与空集的并集等于集合本身)

(4)$A∈(B∪C)=(A∪B)∪C$(三个集合的并集满足“结合律”)

(5)$Asubseteq A∪B,Bsubseteq A∪B$(任何集合都是该集合与另一集合的并集的子集)

(6)$Bsubseteq ALeftrightarrow A∪B=A,Asubseteq BLeftrightarrow A∪B=B$(任何集合与它的子集的并集等于集合本身,反之也成立)

二、并集的相关例题

已知集合$A={x|x^2+x-2<0}$,集合$B={x|x>0}$,则集合$A∪B$=

A.${x|x<1}$

B.${x|x>-2}$

C.${x|0<x<1}$

D.${x|-2<x<1}$

答案:B

解析:∵集合$A={x|x^2+x-2<0}=$${x|-2<x<1}$,$B={x|x>0}$,

∴集合$A∪B={x>-2}$,故选B。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/52593.html

相关文章

感谢您的支持
文章目录
 1