一、切线的性质和判定定理
1、圆的切线
直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
2、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。经过圆心且垂直于切线的直线一定过切点;垂直于切线且过切点的直线必过圆心。
3、切线的性质定理
圆的切线垂直于过切点的半径。
4、切线长
(1)切线长:经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
5、切线的判定和性质的应用
(1)辅助线的作法
运用切线的性质来进行计算或论证的常见辅助线是连接圆心和切点,利用垂直构造直角三角形解决有关问题。
(2)证明直线与圆相切的三种途径
①证直线和圆有唯一公共点(即运用定义)。
②证直线过半径外端且垂直于这条半径(即运用判定定理)。
③证圆心到直线的距离等于圆的半径(即证$d=r$)。
二、切线的性质的相关例题
$AB$是$⊙O$的直径,$AC$是$⊙O$的切线,连接$OC$交$⊙O$于点$D$。连接$BD$,$∠C=36°$,则$∠B$的度数是___
A.27° B.30° C.36° D.54°
答案:A
解析:∵$AC$是$⊙O$的切线,$AB$是$⊙O$的直径,∴$AB⊥AC$,∴$∠OAC= 90°$。∵$∠C=36°$,$∠AOC=54°$,根据圆周角定理得,$∠B=$$frac{1}{2}∠AOC=$$27°$,故选A。