首页 高起点辅导 数学辅导 正文

一元二次方程的一般形式和定义

一、一元二次方程的一般形式和定义

1、一元二次方程

等号两边都是整式,只含有一个未知数(一元)。并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、一元二次方程的一般形式

一元二次方程的一般形式是$ax^2$+$bx$+$c$=0($a$≠0)。其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。

一元二次方程的一般形式和定义  数学辅导  第1张

对于方程$ax^2$+$bx$+$c$=0,只有当$a$≠0时才是一元二次方程。反过来,如果说$ax^2$+$bx$+$c$=0是一元二次方程,则必须含着$a$≠0这个条件。

3、一元二次方程的根

使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。利用方程的根求待定系数时,只需将方程的根代入原方程,再解关于待定系数的方程。

二、一元二次方程的一般形式的相关例题

以下结论正确的是___

A.$5a^2-4a+1$是一元二次方程

B.$3a^2-frac{a}{sqrt{2}}+sqrt{2}=0$的一个根是$a=0$

C.$frac{sqrt{2}}{2}a^2-frac{sqrt{3}}{2}=0$不是一元二次方程

D.当$m≠0$,$n$为一切实数时,$mx^2+nx=0$是一元二次方程

答案:D

解析:A.$5a^2-4a+1$不是一元二次方程,故错误;B.$3a^2-$$frac{a}{sqrt{2}}+$$sqrt{2}=0$的一个根不是$a=0$,当$a=0$时不是一元二次方程,故错误;C.$frac{sqrt{2}}{2}a^2-$$frac{sqrt{3}}{2}=0$,当$a≠0$时,是一元二次方程,故错误;D.当$m≠0$,$n$为一切实数时,$mx^2+$$mx=0$是一元二次方程。故选D。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/52762.html

相关文章

感谢您的支持
文章目录
 1