首页 高起点辅导 数学辅导 正文

二次根式的除法和除法法则

一、二次根式的除法和除法法则

1、二次根式的化简

性质$sqrt{ab}=$$sqrt{a}·sqrt{b}$$(ageqslant0,bgeqslant0)$和$sqrt{frac{a}{b}}=frac{sqrt{a}}{sqrt{b}}$$(ageqslant0,b>0)$是二次根式计算或化简的重要依据,如果一个二次根式的被开方数中有的因式(或因数)能开方开得尽,可以利用积的算术平方根的性质及公式$sqrt{a^2}=a$$(ageqslant0)$,将这些因式(或因数)开出来,从而将二次根式化简。

2、二次根式的乘法法则

二次根式的除法和除法法则  数学辅导  第1张

$sqrt{a}·sqrt{b}=sqrt{ab}$$(ageqslant0,bgeqslant0)$。即两个二次根式相乘,把被开方数相乘,根指数不变。反过来即得到$sqrt{ab}=sqrt{a}·sqrt{b}$$(ageqslant0,bgeqslant0)$,利用它可以进行二次根式的化简。

3、二次根式的除法法则

(1)$frac{sqrt{a}}{sqrt{b}}=sqrt{frac{a}{b}}$$(ageqslant0,b>0)$。即两个二次根式相除,把被开方数相除,根指数不变。反过来即得到$sqrt{frac{a}{b}}=frac{sqrt{a}}{sqrt{b}}$$(ageqslant0,b>0)$,利用它可以进行二次根式的化简。

(2)分母有理化

在二次根式的运算中,最后结果一般要求分母中不含二次根式。把分母中的根号化去的过程称为分母有理化,具体做法:$frac{sqrt{a}}{sqrt{b}}=frac{sqrt{a}·sqrt{b}}{sqrt{b}·sqrt{b}}=frac{sqrt{ab}}{b}$$(ageqslant0,b>0)$;

也可通过类似分式中的“约分”进行分母有理化,如$frac{ab}{sqrt{b}}=$$frac{a(sqrt{b})^2}{sqrt{b}}=$$asqrt{b}$$(b>0)$。

二、二次根式的除法的相关例题

化简$frac{sqrt{15}}{sqrt{3}}$的结果为___

A.$sqrt{2}$ B.$sqrt{3}$ C.2 D.$sqrt{5}$

答案:D

解析:$frac{sqrt{15}}{sqrt{3}}=sqrt{frac{15}{3}}=sqrt{5}$,故选D。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/53000.html

相关文章

感谢您的支持
文章目录
 1