一、一次函数的图象和定义
1、一次函数
一般地,形如$y=kx+b$($k$,$b$是常数,$k≠0$)的函数,叫做一次函数。当$b=0$时,$y=kx+b$即$y=kx$,所以说正比例函数是一种特殊的一次函数。
2、一次函数的判别
要判断一个函数是否为一次函数,就要先将式子进行变形,看它能否化成$y=kx+b$的形式,即$x$的指数为1,$k≠0$,$b$为任意常数。若符合上述条件,且$b≠0$,则这个函数为一次函数;若符合上述条件,且$b=0$,则这个函数既是一次函数,又是正比例函数。
3、一次函数的图象及性质
一次函数$y=kx +b$$(k≠0)$的图象可以由直线$y=kx$平移$|b|$个单位长度得到(当$b>0$时,向上平移;当$b<0$时,向下平移)。一次函数$y=kx+b$$(k≠0)$的图象也是一条直线,我们称它为直线$y=kx+b$。直线$y=kx +b$$(k≠0)$与y轴交于点$(0,b)$,与$x$轴交于点$left(-frac{b}{k},0ight)$。其中$b$叫做直线$y=kx+b$在$y$轴上的截距。
4、一次函数的图象与性质的应用
(1)从函数图象的形状可以判断函数的类型。对于实际问题中的正比例函数和一次函数的图象,大多为线段或射线,因为在实际问题中,自变量的取值范围是有一定限制的,即自变量的取值范围必须使实际问题有意义。
(2)一次函数$y=kx +b$$(k≠0)$的性质主要是指函数的增减性,即$y$随$x$的变化情况,它只与$k$的符号有关,与$b$的符号无关。
即$k>0$,$y$随$x$的增大而增大;
$k<0$,$y$随$x$的增大而减小。
反之,若$y$随$x$的增大而增大,则必有$k>0$;若$y$随$x$的增大而减小,则必有$k<0$。
二、一次函数的图象的相关例题
直线$y=2x+b$与$x$轴的交点坐标是(2,0),则关于$x$的方程$2x+b=0$的解是$x=$___
A.2 B.3 C.4 D.5
答案:A
解析:由一次函数与一元一次方程的关系可知方程$2x+b=0$的解是$x=2$,故选A。