不一定是对称的。正定矩阵在实数域上是对称矩阵。在复数域上是厄米特矩阵(共轭对称)。 因为正定矩阵在定义的时候就是要在厄米特矩阵的域内(实数域上是对称矩阵)。
正定矩阵定义
(1)广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT表示z的转置,就称M为正定矩阵。
例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)
(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。
矩阵正定性的性质
1、正定矩阵的特征值都是正数。
2、正定矩阵的主元也都是正数。
3、正定矩阵的所有子行列式都是正数。
4、正定矩阵将方阵特征值,主元,行列式融为一体。
正定矩阵的特征方法
1、 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。
2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。
3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU
4、对称矩阵A正定,则A的主对角线元素均为正数。
5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。