最恐怖的数学定理有喝醉的小鸟、不能抚平的毛球、气候完全相同的另一端、平分火腿三明治、“你在这里”等。
恐怖的数学定理有哪些
1.喝醉的小鸟
定理:喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家。
假设有一条水平直线,从某个位置出发,每次有50%的概率向左走1米,有50%的概率向右走1米。按照这种方式无限地随机游走下去,最终能回到出发点的概率是多少?答案是100%。在一维随机游走过程中,只要时间足够长,我们最终总能回到出发点。
现在考虑一个喝醉的酒鬼,他在街道上随机游走。假设整个城市的街道呈网格状分布,酒鬼每走到一个十字路口,都会概率均等地选择一条路(包括自己来时的那条路)继续走下去。那么他最终能够回到出发点的概率是多少呢?答案也还是100%。刚开始,这个醉鬼可能会越走越远,但最后他总能找到回家路。
不过,醉酒的小鸟就没有这么幸运了。假如一只小鸟飞行时,每次都从上、下、左、右、前、后中概率均等地选择一个方向,那么它很有可能永远也回不到出发点了。事实上,在三维网格中随机游走,最终能回到出发点的概率只有大约34%。
这个定理是著名数学家波利亚(George Pólya)在1921年证明的。随着维度的增加,回到出发点的概率将变得越来越低。在四维网格中随机游走,最终能回到出发点的概率是19.3%,而在八维空间中,这个概率只有7.3%。
2.不能抚平的毛球
定理:你永远不能理顺椰子上的毛。
想象一个表面长满毛的球体,你能把所有的毛全部梳平,不留下任何像鸡冠一样的一撮毛或者像头发一样的旋吗?拓扑学告诉你,这是办不到的。这叫做毛球定理(hairy ball theorem),它也是由布劳威尔首先证明的。用数学语言来说就是,在一个球体表面,不可能存在连续的单位向量场。这个定理可以推广到更高维的空间:对于任意一个偶数维的球面,连续的单位向量场都是不存在的。
毛球定理在气象学上有一个有趣的应用:由于地球表面的风速和风向都是连续的,因此由毛球定理,地球上总会有一个风速为0的地方,也就是说气旋和风眼是不可避免的。
3.平分火腿三明治
定理:任意给定一个火腿三明治,总有一刀能把它切开,使得火腿、奶酪和面包片恰好都被分成两等份。
而且更有趣的是,这个定理的名字真的就叫做“火腿三明治定理”(ham sandwich theorem)。它是由数学家亚瑟•斯通(Arthur Stone)和约翰•图基(John Tukey)在1942年证明的,在测度论中有着非常重要的意义。
火腿三明治定理可以扩展到n维的情况:如果在n维空间中有n个物体,那么总存在一个n-1维的超平面,它能把每个物体都分成“体积”相等的两份。这些物体可以是任何形状,还可以是不连通的(比如面包片),甚至可以是一些奇形怪状的点集,只要满足点集可测就行了。p分页标题e