首页 高起点辅导 数学辅导 正文

复合函数求导公式 怎样求导函数

1.复合函数怎么求导

总的公式f&39;[g(x)]=f&39;(g)×g&39;(x)

比如说:求ln(x+2)的导函数

[ln(x+2)]&39;=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x&39;】 ×1【注:1即为(x+2)的导数】

主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。

2.复合函数证明方法

先证明个引理

f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f&39;(x0)=H(x0)

证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U&39;(x0)(x0去心邻域);H(x)=f&39;(x0),x=x0

因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f&39;(x0)=H(x0)

所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

复合函数求导公式 怎样求导函数  数学辅导  第1张

反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f&39;(x)=H(x0)

所以f(x)在点x0可导,且f&39;(x0)=H(x0)

引理证毕。

设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F&39;(x0)=f&39;(u0)φ&39;(x0)=f&39;(φ(x0))φ&39;(x0)

证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f&39;(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ&39;(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

F&39;(x0)=f&39;(u0)φ&39;(x0)=f&39;(φ(x0))φ&39;(x0)

证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)

证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f&39;(u)或Δy/Δu=f&39;(u)+α(lim(Δu->0)α=0)

当Δu≠0,用Δu乘等式两边得,Δy=f&39;(u)Δu+αΔu

但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f&39;(u)Δu+αΔu]/Δx=f&39;(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

则lim(Δx->0)α=0

最终有dy/dx=(dy/du)*(du/dx)

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/54234.html

相关文章

感谢您的支持
文章目录
 1