首页 高起点辅导 数学辅导 正文

二阶导数怎么判断极值 cauchy中值定理

一、二阶导数怎么判断极值

当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。

二阶导数原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

二阶导数怎么判断极值 cauchy中值定理  数学辅导  第1张

如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点

如果一个函数f(x)在某个区间I上有f&39;&39;(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

二、cauchy中值定理

用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一,该定理可以视作在参数方程下拉格朗日中值定理的表达形式。柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

柯西中值定理是微分中值定理的三大定理之一,它比罗尔定理与拉格朗日中值定理更具一般性,也具有更广泛的应用性,但大多高等数学的教材中仅介绍了柯西中值定理及其证明,对该定理的应用涉及较少,不利于学生对该定理的理解并发挥其应用价值。

柯西中值定理的一个最重要的应用就是可以推导计算待定型的极限最有效的方法——洛必达法则。

洛必达法则是求两个无穷小量或两个无穷大量的比的极限。在满足一定条件下可以化成两个函数的导数的比值极限,这样就有可能使得原待定型变成简便而有效的求非待定型极限的问题。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/54805.html

相关文章

感谢您的支持
文章目录
 1