一、函数的n阶导数怎么求
y &39; = 2sinxcosx = sin2x
y &39;&39; = 2cos2x
y &39;&39;&39; = -4sin2x
y^(4) = -8cos2x
一般地,y^(n) = 2^(n-1) * sin[2x+(n-1)兀/2]
例如:
^^^y=lnx/x
y&39;=(1-lnx)/x^2=1/x^2-lnx/x^2
y"=-2/x^3-(1-2lnx)/x^3=-3/x^3+2lnx/x^3
记y(n)=(-1)^(n+1)*[ an- n!dulnx]/x^(n+1)
有zhiy(n+1)=(-1)^n*an (n+1)/x^(n+2)+(-1)^n* n![1- (n+1)lnx]/x^(n+2)
a(n+1)=(n+1)an+n!
a1=1,a2=3,a3=11,a4=50,a5=274
二、n阶导数是什么
二阶及二阶以上的导数统称为高阶导数。
所谓n阶导数,其实是指对函数进行n次求导,就求函数的高阶导数中的n阶导数。关于n阶导数的常见公式可以分成两类:一类是常见导数,也就是初等函数的特殊形式的n阶导数;另一类是复合函数,包括四则运算的n阶导数公式。