一、导数知识点
知识点
函数的平均变化率、函数的瞬时变化率、导数的概念、求导函数的一般步骤、导数的几何意义、利用定义求导数、导数的加(减)法法则、导数的乘法法则、导数的除法法则、简单复合函数的导数等知识点。其中理解导数的定义是关键,同时也要熟记常见的八种函数的导数及导数的运算法则。
常见考法
在阶段考中,以选择题、填空题和解答题的形式考查求导的知识,在高考中,主要是融合在函数解答题中联合考查求导的知识。一般求导容易解答。直接利用求导的运算法则和复合函数的求导方法解答。
二、导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f&39;(x0) ,即导数第一定义