首页 高起点辅导 数学辅导 正文

函数的奇偶性 函数f(x)的奇偶性

一、函数的奇偶性

知识点概述

1. 理解函数的奇偶性及其几何意义;

2. 学会判断函数的奇偶性;

3. 学会运用函数图象理解和研究函数的性质.

一、定义

函数的奇偶性 函数f(x)的奇偶性  数学辅导  第1张

对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

奇函数:关于原点对称。(做题时可考虑特殊值法),f(0)=0)。F(-x)= -f(x)

偶函数:关于y轴对称。F(-x)=f(x)

二、函数f(x)的奇偶性

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/54846.html

相关文章

感谢您的支持
文章目录
 1