一、双曲线焦点弦公式
双曲线
(1)焦点弦:A(x1,y1),B(x2,y2),AB为双曲线的焦点弦,M(x,y)为AB中点,则L=-2a±2ex
(2)设直线:与双曲线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则|P1P2|=|x1-x2|√(1+K²)或|P1P2|=|y1-y2|√(1+1/K²){K=(y2-y2)/(x2-x1)}
二、渐近线相关结论
1.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);
2.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解;
3.x^2/a^2-y^2/b^2=1的渐近线方程为±b/a*x=y;
4.y^2/a^2-x^2/b^2=1的渐近线方程为±a/b*x=y。