首页 高起点辅导 数学辅导 正文

奇函数和偶函数的不同 奇函数与偶函数的性质

一、奇函数和偶函数的不同

奇函数:关于原点对称,对于互为相反数的自变量,其函数值也互为相反数。自变量a,-a,该自变量互为相反数即:a+(-a)=0,其对应的函数值f(a),f(-a),也互为相反数,即:f(a)+f(-a)=0,或写成f(a)=-f(-a);具体数字例子:f(3)+f(-3)=0。

偶函数:关于Y轴对称,对于互为相反数的自变量,其函数值不变。如自变量a,-a,该自变量互为相反数即:a+(-a)=0,其对应的函数值f(a),f(-a)相等,即:f(a)=f(-a),具体数字例子:f(3)=f(-3)。

奇函数和偶函数的不同 奇函数与偶函数的性质  数学辅导  第1张

相同:定义域都必须关于原点对称,如定义域:(-5,5),或(-10,-1)∪(1,10)等等都是关于0对称的,如果定义域为(-1,8)或(2,9)等不关于原点对称,无论函数怎样均不是奇偶函数。

二、奇函数与偶函数的性质

1、奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。

2、如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数(Even Function)。

3、函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

4、函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/55483.html

相关文章

感谢您的支持
文章目录
 1