ln的导数是1/x。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
一、ln的导数怎么推
由基本的求导公式可以知道y=lnx,那么y&39;=1/x,如果由定义推导的话,(lnx)&39;=lim(dx->0) ln(x+dx) -lnx / dx=lim(dx->0) ln(1+dx /x) / dx,dx/x趋于0,那么ln(1+dx /x)等价于dx /x,所以lim(dx->0) ln(1+dx /x) / dx=lim(dx->0),(dx /x) / dx=1/x,即y=lnx的导数是y&39;= 1/x。
二、导数的几何意义
导数的几何意义函数y=fx在x0点的导数f&39;x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率。导数的几何意义是该函数曲线在这一点上的切线斜率。导数的应用导数与物理几何代数关系密切。在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度。
高考数学必考知识点
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c&39;*h
正棱锥侧面积S=1/2c*h&39;正棱台侧面积S=1/2(c+c&39;)h&39;
圆台侧面积S=1/2(c+c&39;)l=pi(R+r)l球的表面积S=4pi*r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c&39;*h
正棱锥侧面积 S=1/2c*h&39; 正棱台侧面积 S=1/2(c+c&39;)h&39;
圆台侧面积 S=1/2(c+c&39;)l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S&39;L 注:其中,S&39;是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h