首页 高起点辅导 数学辅导 正文

​高中几何怎么才能提高成绩 解题技巧有哪些

想要学好立体几何,首先就是要打好基础,其次是转化思想,要把空间问题转化成平面问题,还有一点也是最重要的一点,要找对做题方法,才能事半功倍。

一、高中生怎样提高立体几何的成绩

1.高中生对于几何图形的理解存在障碍

由于高中生在学习立体几何初期,逻辑思维能力和空间想象能力比较差,导致学习过程比较吃力。在几何图形的学习过程中,要学会将几何图形语言转化成文字语言,这也是学习立体几何的关键所在。在立体几何中有时候学生看到的图形并不能真实的反应图形的结构,学生要接受和理解立体几何和真实图形中存在的差异。

2.高中生对立体几何概念理解不透彻

高中生学习压力较大,形成一种机械式的学习方式,对于概念一般采用死记硬背的学习方式,并不懂得方法的理解。其实学好立体几何,概念理解也相当的重要。很少有学生对几何概念的真正涵义进行深入挖掘。所以学生在运用理论知识的时候并没有理解其真正的涵义,导致几何证明的过程中不知道该如何运用定理和公式。

二、高中几何有哪些解题技巧

所谓的解题技巧,就是以最短的路径,最精简的方法,得出答案。

第一,熟悉基本的概念,公理,定理,以及各种推论,最好多做不同类型的练习题,加深映象和理解,了解各定理和推论的各种变式以及各自的应用范围。

第二,几何是一门以一些已知关系求取一些未知关系之间的关系的学科,所以作辅助线就显得很重要,主要是直观,因为有时候关系多了记不住,就要把他标记下来,所以要多多思考怎样作辅助,需要什么辅助线才能达到目的。

第三,立体几何里面有一些特殊的关系式,比如正弦定理,余弦定理,海伦公式,二面角的四角公式等等,这些都是被证明了的恒等式,平时注意记忆和运用。

第四,经常思考,想明白各种定理、推论之间的关系,各种变化的由来以及用处,真正融会贯通,自然信手拈来。说到底,现在学习的都是前人证明了的各种逻辑关系式,我们只不过学习并运用而也,就是要靠记忆,理解,运用了,基础最重要,所有复杂的东西都是由最基本的东西组成的,最基本的搞清楚了,复杂的东西自然就会了。

高考数学必考知识点

​高中几何怎么才能提高成绩 解题技巧有哪些  数学辅导  第1张

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=c*h斜棱柱侧面积S=c&39;*h

正棱锥侧面积S=1/2c*h&39;正棱台侧面积S=1/2(c+c&39;)h&39;

圆台侧面积S=1/2(c+c&39;)l=pi(R+r)l球的表面积S=4pi*r2

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2p分页标题e

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c&39;*h

正棱锥侧面积 S=1/2c*h&39; 正棱台侧面积 S=1/2(c+c&39;)h&39;

圆台侧面积 S=1/2(c+c&39;)l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S&39;L 注:其中,S&39;是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/56088.html

相关文章

感谢您的支持
文章目录
 1