二次函数的顶点坐标公式
对于二次函数y=ax^2+bx+c,
其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],
其中x1,2=-b±√b^2-4ac,
顶点式:y=a(x-h)^2+k,
[抛物线的顶点P(h,k)],
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),
注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。
所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b2/4a)。