首页 高起点辅导 数学辅导 正文

三角函数公式表,三角函数的所有公式归纳

一、三角函数公式表

一、倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )

二、推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

三、两角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

扩展资料:

以下关系,函数名不变,符号看象限.

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

以下关系,奇变偶不变,符号看象限

sin(90°-α)=cosα

cos(90°-α)=sinα

tan(90°-α)=cotα

cot(90°-α)=tanα

sin(90°+α)=cosα

cos(90°+α)=-sinα

tan(90°+α)=-cotα

cot(90°+α)=-tanα

sin(270°-α)=-cosα

cos(270°-α)=-sinα

tan(270°-α)=cotα

cot(270°-α)=tanα

sin(270°+α)=-cosα

cos(270°+α)=sinα

三角函数公式表,三角函数的所有公式归纳  数学辅导  第1张

tan(270°+α)=-cotα

cot(270°+α)=-tanα

二、三角函数公式大全

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

6、公式六:π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

p分页标题e

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

三、三角函数的所有公式归纳

正弦函数

sinθ=y/r

余弦函数

cosθ=x/r

正切函数

tanθ=y/x

余切函数

cotθ=x/y

正割函数

secθ=r/x

余割函数

cscθ=r/y

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

•积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

•倒数关系:

tanα•cotα=1

sinα•cscα=1

cosα•secα=1

三角函数恒等变形公式:

•两角和与差的三角函数:

cos(α+β)=cosα•cosβ-sinα•sinβ

cos(α-β)=cosα•cosβ+sinα•sinβ

sin(α±β)=sinα•cosβ±cosα•sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)

•辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

•倍角公式:

sin(2α)=2sinα•cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

•三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

•半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

•万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

•积化和差公式:

sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]

•和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/56230.html

相关文章

感谢您的支持
文章目录
 1