首页 高起点辅导 数学辅导 正文

高中数学三角函数知识点总结,高中数学三角函数公式记忆口诀,

一、高中数学三角函数知识点

锐角三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2—SinA^2=1—2SinA^2=2CosA^2—1

tan2A=(2tanA)/(1—tanA^2)

(注:SinA^2是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3—α)

cos3α=4cosα·cos(π/3+α)cos(π/3—α)

tan3a=tana·tan(π/3+a)·tan(π/3—a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α—t),tant=A/B降幂公式

sin^2(α)=(1—cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1—cos(2α))/(1+cos(2α))

推导公式

tanα+cotα=2/sin2α

tanα—cotα=—2cot2α

1+cos2α=2cos^2α

1—cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1—sin2a)+(1—2sin2a)sina

=3sina—4sin3a

cos3a

=cos(2a+a)

=cos2acosa—sin2asina

=(2cos2a—1)cosa—2(1—sin2a)cosa

=4cos3a—3cosa

sin3a=3sina—4sin3a

=4sina(3/4—sin2a)

=4sina[(√3/2)2—sin2a]

=4sina(sin260°—sin2a)

=4sina(sin60°+sina)(sin60°—sina)

=4sina*2sin[(60+a)/2]cos[(60°—a)/2]*2sin[(60°—a)/2]cos[(60°—a)/2]

=4sinasin(60°+a)sin(60°—a)

cos3a=4cos3a—3cosa

高中数学三角函数知识点总结,高中数学三角函数公式记忆口诀,  数学辅导  第1张

=4cosa(cos2a—3/4)

=4cosa[cos2a—(√3/2)2]

=4cosa(cos2a—cos230°)

=4cosa(cosa+cos30°)(cosa—cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a—30°)/2]*{—2sin[(a+30°)/2]sin[(a—30°)/2]}

=—4cosasin(a+30°)sin(a—30°)

=—4cosasin[90°—(60°—a)]sin[—90°+(60°+a)]

=—4cosacos(60°—a)[—cos(60°+a)]

=4cosacos(60°—a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°—a)tan(60°+a)

半角公式

tan(A/2)=(1—cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1—cosA)=(1+cosA)/sinA

sin^2(a/2)=(1—cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1—cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)

两角和差p分页标题e

cos(α+β)=cosα·cosβ—sinα·sinβ

cos(α—β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1—tanα·tanβ)

tan(α—β)=(tanα—tanβ)/(1+tanα·tanβ)

和差化积

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ—φ)/2]

sinθ—sinφ=2cos[(θ+φ)/2]sin[(θ—φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ—φ)/2]

cosθ—cosφ=—2sin[(θ+φ)/2]sin[(θ—φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1—tanAtanB)

tanA—tanB=sin(A—B)/cosAcosB=tan(A—B)(1+tanAtanB)

积化和差

sinαsinβ=[cos(α—β)—cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(α—β)]/2

sinαcosβ=[sin(α+β)+sin(α—β)]/2

cosαsinβ=[sin(α+β)—sin(α—β)]/2

诱导公式

sin(—α)=—sinα

cos(—α)=cosα

tan(—a)=—tanα

sin(π/2—α)=cosα

cos(π/2—α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=—sinα

sin(π—α)=sinα

cos(π—α)=—cosα

sin(π+α)=—sinα

cos(π+α)=—cosα

tanA=sinA/cosA

tan(π/2+α)=—cotα

tan(π/2—α)=cotα

tan(π—α)=—tanα

tan(π+α)=tanα

诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1—tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1—tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=π—C

tan(A+B)=tan(π—C)

(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1—2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n—1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n—1)/n]=0以及

sin^2(α)+sin^2(α—2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB—tan(A+B)=0

二、高中数学三角函数公式记忆口诀

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。p分页标题e

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

海报

本文转载自互联网,如有侵权,联系删除

本文地址:https://www.edbdz.com/shuxuefudao/56305.html

相关文章

感谢您的支持
文章目录
 1