设R为空间X中点的连通关系,每个等价类R[x]称为空间X的一个连通分支。设Y为空间X的非空子集,Y作为X的子空间的连通分支称为X的子集Y的连通分支。拓扑空间X的所有连通分支之族是X的 深入了解
行列式A中某行(或列)用同一数k乘,其结果等于kA;行列式A等于其转置行列式AT(AT的第i行为A的第i列)。行列式A中两行(或列)互换,其结果等于-A。把行列式A的某行(或列)中各元 深入了解
初等矩阵都是可逆矩阵。是否可逆看它的行列式是否为零,因为初等矩阵行列式都为1,所以都可逆。初等矩阵是一个n阶单位矩阵E经过一次初等行变换。从正交矩阵的构成定理来看,要 深入了解
利用导数来判别函数的驻点或可微点是否为局部极值点的方法。结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶 深入了解
实矩阵的特征值一定是实数。如果λ是实矩阵A的实特征值,那么其特征向量是实数域上的方程组(A-λI)x=0的解,可以取成实的。但是不能说x一定是实的,在复数域上ix显然也是A的特征向量,并 深入了解
阶梯形矩阵的特点是如果零行在最下方或者非零首元的列标号随行标号的增加而增加,那么就是阶梯形短阵。如果一个矩阵的左上角为单位矩阵,其他位置的元素都为零,则称这个矩阵 深入了解
相似矩阵的行列式相等。相似矩阵有相同的特征值、特征行列式,行列式也是相等的。另外,两矩阵的迹、秩,都是相等的。设A,B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是 深入了解
正交矩阵的行列式是+1或−1。实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。比行列式限制 深入了解
两个n阶正交矩阵的乘积是正交矩阵。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵 深入了解
setinterval函数可按照指定的周期(以毫秒计)来调用函数或计算表达式。setInterval功能用于循环,常常用于播放动画,或者时间显示,是在指定的周期内。按照参数的函数名去运行一个函数 深入了解